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We study the deformation and conditions for breakup of a liquid drop of viscosity Ap 
freely suspended in another liquid of viscosity p with which i t  is immiscible and which 
is being sheared. The problem a t  zero Reynolds number is formulated exactly as an 
integral equation for the unknown surface velocity, which is shown to reduce to  a 
particularly simple form when A = 1.  This equation is then solved numerically, for the 
case in which the impressed shear is a radially symmetric extensional flow, by an 
improved version of the technique used, for h = 0, by Youngren & Acrivos (1976) SO 

that  we model the time-dependent distortion of an initially spherical drop. It is shown 
that, for a given A,  a steady shape is attained only if the dimensionless group 
Q = 4nGpa/y lies below a critical value Q,(A), where G refers to the strength of the 
shear field, a is the radius of the initial sphericaI drop and y is the interfacial tension. 
On the other hand, when Q > Rc the drop extends indefinitely along its long axis. The 
numerical results for h = 0.3, 0.5, 1,  2,  10 and 100 are in good agreement with the 
predictions of the small deformation analysis by Taylor (1932) and Barthhs-Biesel & 
Acrivos (1973) and, a t  the smaller A, with those of slender-body theory (Taylor 1964; 
Acrivos & Lo 1978). 

1. Introduction 
When individual drops of one fluid are placed in another liquid which is undergoing 

shear, they will deform and, if the shear rate is sufficiently large, break up. There is 
thus a limiting size for a drop that will not burst in a shear flow of given strength. 
These phenomena have implications in a variety of seemingly diverse problems, such 
as the dispersion of one liquid phase into another, the rheology of emulsions, and 
tertiary oil recovery (Taylor 1934; Frankel & Acrivos 1970; Grace 1971; BarthBs- 
Biesel & Acrivos 1973). Theoretical studies of drop deformation with negligible inertia 
have dealt primarily with the two limiting cases in which the deformation from a 
spherical shape is either small (Taylor 1932; Cox 1969; BarthBs-Biesel & Acrivos 1973), 
or large, so that the drop is elongated and the methods of slender-body theory are 
applicable (Taylor 1964; Buckmaster 1972, 1973; Acrivos & Lo 1978). Exceptions are 
the work of Richardson (1968) and Buckmaster & Flaherty (1973), who employed 
complex-variable analysis to  study two-dimensional drops. This approach, however, 
cannot be extended to  the more realistic three-dimensional case. 
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FIGURE 1. Schematic sketch for drop deformation. 

Recently, Youngren & Acrivos (1976) developed a numerical technique to calculate 
the steady deformation of an inviscid drop placed in an extensional flow. The Stokes 
equations for the flow outside the drop were reformulated as an integral equation for 
the velocities and Stokeslets over the surface of the drop, and the drop shape was 
systematically adjusted until the condition of zero normal velocity was satisfied 
everywhere on the surface. The present paper presents an improved version of the 
integral formulation of Youngren & Acrivos (1976) which enables drops of arbitrary 
(non-zero) viscosity to be treated. The representation used is shown to generate a 
particularly simple expression for the surface velocities when the interior and exterior 
fluid viscosities are equal, a simplification that will be exploited for non-axisymmetric 
flows in a later paper. Here, however, we concentrate on the case of a uniaxial exten- 
sional flow and solve numerically for the time-dependent disbortion of an initially 
spherical drop of arbitrary viscosity until it either attains a steady shape or starts to 
grow without limit. Our present results for the deformation as a function of flow 
strength at a given viscosity ratio, and for the variation with viscosity ratio of the 
critical flow strength required for breakup, compare favourably with the earlier 
predictions from the asymptotic analyses for small distortion (Barthds-Biesel & 
Acrivos 1973) and large distortion (Acrivos & Lo 1978). 

2. Statement of problem and integral formulation 
We consider a drop of viscosity hp which is immersed in a fluid of viscosity p and 

which has interfacial surface tension y .  The fluid at infinity is made to flow with 
velocity uw = E . x and the drop consequently deforms. Figure 1 shows the problem 
schematically. We consider a low Reynolds number deformation which is, therefore, 
quasi-static. Consequently u(x), the fluid velocity a t  each instant, is governed by the 
following equations: 

V.u= 0 everywhere, V.a= 0 for x$S, (1  a, b )  

(1c) 1 --PI +p(vu + VUT) for x E P, 
-PI + hp(Vu + VuT) for z E V .  

.=( 
The boundary conditions are 

u+um as / X I - +  00, 

where [ Is denotes the jump across the surface of the drop S from the outside to the 
inside, n is the outward normal and V . n is the surface curvature. The solution of (1) 
and (2) gives the instantaneous velocity of every point on S ,  and the rate of deformation 
is determined by the normal component of this velocity. 

[uIs = 0, [a.nIs = ynV.n, ( 2 b )  
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Since the full solution of ( 1 )  with (2) contains very much more information than is 
needed to  determine the deformation, a more convenient formulation of the problem 
is as an integral equation for the unknown surface velocities. The method is discussed 
by Ladyzhenskaya (1963) and was used by Youngren & Acrivos (1975, 1976) for solid 
particles and for droplets with h = 0. We outline here the derivation of our basic 
equation for general A. 

Following Ladyzhenskaya (1969, chap. 3),  we have for the exterior problem (x E P) 

where U' = u - urn denotes the disturbance velocity, vij = crij - cr; is the corresponding 
stress tensor arising from the disturbed flow, and 

3 rir5rk rir5 
Ki jk(r )  = -- - &(r) = -+-, r = x-y. 

4n r5 ' r r3 (4) 

However, since am(x) and um(x) have no singularities except at infinity, application 
of the divergence theorem to (3) followed by integration over V easily leads to the 
result that ,  for any imposed flow u*(x) satisfying the creeping-flow equations, 

for X E  P. Then on letting x 4 S from X E  P we have, on account of the well-known 
jump condition (Ladyzhenskaya 1969, p. 57)  for the first integral in (5),  

for x EX. Similarly, from the corresponding interior problem (x E V ) ,  we have 

for x E S .  Hence, combining (6) and (7) and making use of (a ) ,  we conclude that for x E X  

- 8  

We note in passing that when h = 1 we obtain the particularly simple form 

u,.(x) = u?(x)-- Jij(x-y)nj(y)V.ndS,, 
8n.P 'I 

which in fact is valid a t  all points x, not just those on S .  The reason for this is that  
when h = 1 the flow, which is governed everywhere by the same set of equations, 
equals the sum of the imposed flow at  infinity and a flow generated by a 'membrane' 
of point forces (Stokeslets) acting on the fluid, with no surface boundary conditions 
to  be satisfied. This simplification when h = 1 has also been exploited in the two- 
dimensional work of Buckmaster & Flaherty (1973). 

7 F L M  89 
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Properties of the integral equation 

If u (or equivalently the time scale t )  is resealed by y/2n,u( 1 + A ) ,  and x by a ,  then 
putting u? = Eij xj in (8) gives 

Ui(X)+ l+h KijkUjnkdS = q ( X )  Q E i j X j - -  2 &.njV.kIdS, (10) 
2(1 -"S 'S 

where R = 4nGpa/y,  with G a characteristic strain rate of the imposed flow and a the 
radius of a spherical drop of the same volume as the drop undergoing deformation. 
F is the forcing term due to the imposed flow and the drop surface tension. The scaling 
of u reflects the fact that the time scale for deformation is determined by the larger 
of the viscosities ,u and hp.  Clearly, there are two dimensionless parameters for the 
problem: h and R,  the latter being the ratio of the flow forces tending to  increase the 
deformation of the drop to the surface-tension forces inhibiting it. 

Given h and 0, (10) is an integral equation of the second kind for the surface 
velocities u(x). Difficulties arise whenever the operator on the left-hand side of (10)  
has neutral eigensolutions u,. As discussed by Ladyzhenskaya (1969, pp. 61, 62),  there 
is just one such eigensolution when h = 0 (which involves a volume change), and if 
h = co the six rigid-body motions for the drop are all eigensolutions. Away from these 
extremes, the operator is clearly non-singular at h = 1 (and therefore in some neigh- 
bourhood of h = I ) ,  and since in practice no numerical difficulties were encountered 
lsewhere it appears most probable that it remains non-singular for 0 < h < co. 

Axisymmetric drops 

When the drop shape and the imposed flow are axisymmetric, the surface integrals in 
( 1  0)  can be reduced to  line integrals by performing the azimuthal integrations analyti- 
cally. I n  addition, for a linear extensional flow, the problem can be further simplified 
by exploiting the fore-and-aft symmetry of the drop. We thus suppose that the applied 
flow is given by E = diag(3, - 1, - 1) and that the shape is defined by r = 

R ( x )  (0 < x < 1 )  with R( -2) = R(x)  and R(Z) = 0, as shown in figure 2. With U(X) = 
(u,(x), u J x ) )  and F(x) = ( q ( x ) ,  FZ(x)), (10) may then be written as 

where the kernel functions K have been determined explicitly in terms of complete 
elliptic integrals by Youngren & Acrivos (1975). In  addition, 

where Jr and J, have similarly been determined (Youngren & Acrivos 1975). 
The fore-and-aft symmetry provides the further small simplification that (a,., F,)  are 

even in x while (ux, F,) are odd. This observation means that, in the finite-difference 
form for the equations discussed in 5 3, the number of unknown velocities is halved and, 
more important, that  the h = co eigensolutions (rigid-body motions) of (10) are 
analytically excluded, thereby rendering the modified integral operator to  be inverted 
non-singular a t  h = co. 



Deformation of a drop in extensional flow 195 

FIGURE 2. Co-ordinate system for an axisymmetric, fore-and-aft symmetric drop. 

3. Numerical technique 
The following numerical method was used. Starting from the given initial shape, 

N + 1 surface points xi (i = 0, . . ., N) spaced along the half-Iength, with x,, = (0, R(0)) 
and xIv = ( I ,  0)) were chosen. A centrally centred finite-difference scheme was used to 
compute the slope and the curvature a t  each point. (In view of the infinite derivatives 
a t  the drop ends, this was found to  be more convenient than the spline-fitting technique 
used by Youngren & Acrivos 1976.) On the assumption that u did not vary too rapidly 
over the surface, the integrals in (1 1) could be evaluated by a trapezoidal rule, with 
relative errors of order Ixi - xi+112, so that, symbolically, 

(’::\) + (Lm-(xi, Lrrfxi, xi) xi) hrz(xi, Lzz(xi) xi)  ) (u,i.j,) uz(xj) = (F, (x i ) )  Fj(xi) (13) 

with summation over the xi. A finite-difference form for the integrals in (12) was 
similarly obtained. Some care is required in determining certain contributions to  these 
integrals since both J and K are singular when xi = xi. The singularity is logarithmic for 
i = j + N, but a t  the end, where i = j = N ,  the integral for J varies as (1  - y)-i. In  both 
cases the integration over these segments was performed by subtracting the singularity, 
integrating i t  analytically and then adding the result to  the numerically computed 
integral of the remainder. A check on the evaluation of F was made by increasing Nand 
so decreasing the distance between collocation points. It was found that N = 8 was 
sufficient to  give 2 yo accuracy in the evaluation of J for nearly spherical shapes, but 
that  for more extended drops with larger curvatures a t  their ends values of N up to 12 
were required to  maintain the same accuracy with a large density of points near the 
end. 

I n  this finite-difference form, the integral equation is reduced to a matrix equation 
(13) for the velocities u,(xi) and u,(xi) (i = 0, ..., N ) .  This was solved by standard 
matrix-inversion techniques (Gaussian elimination), which encountered no difficulties 
away from the singular case h = 0. Unfortunately, for A < 0.1, unacceptably large 
multiples of the undesired neutral eigensolution (at h = 0) were found to  appear. I n  
addition, the resolution of the higher end curvatures was difficult for small A ,  and the 
consequent smallness of the time step required for numerical stability (as discussed 
below) made it very difficult to  construct reliable solutions by this method. Thus we 
shall present results only for h 2 0-3. 

After the velocity a t  each collocation point had been determined, the instantaneous 
normal component un(x)  was computed from 

U J X )  = (u, - R’(x) U z ) / (  1 + R’2(X))* 
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and, with a time step At, each point xi on the surface was moved to  xi + un(xi) n(x i )  At, 
with error O(At2).  A new drop shape was thereby obtained. The process was then 
repeated until either an equilibrium was established with u,(xi) -+ 0 for i = 0, ..., N ,  
or the deformation appeared to  increase without limit. 

Numerical stability 

For accurate evaluation of the integrals the typical spacing Ax between the xi’s must 
not be too large. I n  addition the following argument shows that, for numerical stability 
of the explicit scheme used here, the time step At must be correspondingly small. 
Suppose that a t  some stage in the evolution there is a small error e in the computed 
position of the ith point. Then the consequent error in the curvature at that point will 
be 0 ( ~ / ( A x ) ~ )  and, in the worst case i = j = N ,  the error in the computed velocity a t  x j  
will be O((Ax) t  e / (Ax)2) .  Hence a t  the next time step the additional error in the position 
of the j t h  point will be O(eAt/(Ax)8).  Thus if the error is not to  increase, we must take 

At < K(Ax)9,  (14) 

where K is an O(1) constant. Numerical experiments with small values of N in fact 
demonstrated that K = 1 was sufficient. 

A useful and simple check on the results as the time evolution progressed was to 
determine whether the incompressibility constraint 

/su.ndfJ = 0 

was automatically satisfied. I n  order to maintain the constraint to  the desired accuracy 
it was found expedient t o  add extra points near the drop ends as the curvature there 
increased (and correspondingly to  decrease the time step). For h < 0.1, however, 
unacceptably large volume changes occurred, no doubt associated with the appearance 
of the neutral eigensolution a t  h = 0. 

4. Numerical results 
Solutions were obtained for h = 0.3, 0-5, 1, 2, 10 and 100. It was found that the 

results for h = 100 were almost identical to  those at h = 10, thereby indicating that 
the steady-state solution which is found asymptotically as h -+ 00 extends as far down 
as h = 10. For each A, the time evolution of the drop shape was computed for a range 
of values of s2 starting each time from a spherical initial condition. Two classes of 
behaviour were observed. For sufficiently strong (‘ supercritical ’) flows the drop would 
a t  first deform rapidly, then surface-tension forces would increase, so that the deforma- 
tion proceeded less rapidly for a while, and finally, as the ends of the drop found them- 
selves in a region of more rapidly moving fluid, the distortion would again increase 
faster. After further growth, an instability appeared which had a wavelength which 
was determined by the spacing of the collocation points. Changing either the number 
or spacing of these points, with the consequent change in At demanded by (14), altered 
the time of onset of the instability but could not ultimately suppress it. 

On the other hand, for sufficiently weak (‘subcritical’) flows the normal velocity 
everywhere decreased monotonically from its initial value (proportional to  Q) to zero. 
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FIGURE 3.  Velocity of fluid particle at end of drop in uniaxial 
extension as a function of time; h = 1. 

It was found that the velocity very rapidly became small along most of the length of 
the drop even for quite large 0, and that subsequent deformation continued primarily 
a t  the ends, where further adjustment of the curvature was necessary. 

A simple indication of this behaviour is given by figure 3, where the velocity of the 
point a t  the end of the drop is plotted as a function of time for various a's with h = 1. 
Its  initial value is 2Q. The criterion applied for equilibrium to have been reached was 
that the non-dimensional normal velocity should not exceed 0.1 a t  every collocation 
point. It is seen from figure 3 that the insensitivity of the velocity minimum for values 
of Q close t o  the critical value Qc poses a difficulty in determining Q, precisely. There is 
an uncertainty in Q, of about 0.03 from this source, and the computed value will in 
general be a slight overestimate. In comparing values of Qc a t  different A ,  however, the 
inaccuracy from this source is reduced since the same criterion is applied. 

An appropriate scalar measure of the magnitude of the deformation is 

Df = (L  - B ) / ( L  + B) ,  

where L and B are respectively the lengths of the major and minor axes of the drop. 
Figure 4 shows graphs of 

3 19h+16Q 
4n 16A+ 16 

D,(Q, A )  -- ___ 

for those cases where an equilibrium was attained. This quansity vanishes according 
t o  the linear theory of Taylor (1932), so the plot measures deviations from the linear 
theory. The results from the O(D;) theory of BarthBs-Biesel & Acrivos (1973) are 
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FIGURE 4. Equilibrium deformations D,-- - + l6 Q as functions of Q a t  a given A. -, 

numerical solution; ---, quadratic theory (BarthBs-Biesel & Acrivos 1973). 
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shown in figure 4. Figure 5 gives the critical flow strength Q, as a function of the 
viscosity ratio A. Here the comparison is with the theories of Barthhs-Biesel & Acrivos 
(1973) and with the large deformation, small A, theory of Taylor (1964) and of Acrivos & 
Lo (1978). 

Figure 4 shows that the linear, small deformation, theory is remarkably accurate in 
predicting the equilibrium distortion of a drop in uniaxial straining, even for flow rates 
comparable to  those a t  which it will burst. The quadratic terms as computed by 
Barthes-Biesel & Acrivos (1973) have a very small range of usefulness, and indeed 
produce a somewhat worse estimate for D(S2) than the linear theory over most of the 
range. On the other hand, the prediction of S2,(h) from the quadratic terms is better 
than one might expect (see figure 5 ) ;  the qualitative trend is correct, and indeed the 
numerical agreement is within 20 % for the range of h considered here. 

The Taylor (1964) asymptote, QZ,(h) = 0.930h-4 as h -+ 0, is derived from slender- 
body theory. The agreement with our results shown in figure 5 is again gratifyingly 
close, considering that the largest aspect ratio for our data is a little greater than 2. 
I n  addition, the infinitesimal stability analysis of Acrivos & Lo (1978) demonstrates 
that S2 > 0.930h-Q is a sufficient condition for instability (and hence burst) but leaves 
open the possibility that a finite amplitude instability (such as that involved in 
discretizing the equations, for instance) might produce a lower asymptotic value for Q,. 

The mechanism of the final breakup of cylindrical drops in extension has been 
discussed by Tomotika (1936) and by Mikami, Cox & Mason (1975). They demonstrated 
that disturbances with a range of wavelengths along the drop will be amplified for 
sufficiently extended shapes, but that  since the wavelengths of such disturbances 
continually increase owing to the stretching of the basic shape, the overall magnifica- 
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FIGURE 5 .  Critical value of !2 for bursting as a function of A.  -, numerical solution; ---, 
quadratic theory (BarthBs-Biesel & Acrivos 1973); -.-.-, slender-body theory (Taylor 1964; 
Acrivos & Lo 197 8). 

tion of any one disturbance is finite. It appears then that on theoretical grounds there 
is no uniquely specified ‘most unstable disturbance’. The appearance in our work of a 
numerical instability whose wavelength varies with the positions of the collocation 
points for sufficiently extended drops is in accord with this analysis. 

A particular advantage of solving an initial-value problem for the shape was as done 
here is that, when there is a possibility that solutions will bifurcate, a specific prediction 
is made for the branch of the solution to be expected. The previous discussion has been 
exclusively concerned with the physically natural initial condition of a spherical shape, 
but the question remains as to the behaviour of the solution for other initial conditions. 
This has not been exhaustively nor systematically studied here. One case of particular 
importance and relevance to  theoretical suspension studes with deformable micro- 
structures, however, is that in which a weak flow is applied to  a drop which has been 
extended by a strong flow. Provisional numerical experiments indicated that two 
possibilities could arise: very extended initial shapes could be further extended to  the 
point of bursting by a velocity field which would be subcritical with a spherical initial 
shape; less extended critical shapes could relax back to the equilibrium found 
previously. At any rate, in our studies no ‘new ’ equilibria were found by this technique. 

We have thus demonstrated that our method of solution leads to  reliable results for 
deformation and breakup provided that h is not too small. In  principle, it should be 
possible of course to  compute steady shapes for h < 0.3 by employing an implicit (in 
time) numerical technique which could be made significantly more stable, in a 
numerical sense, than the explicit procedure used here, although, clearly, such a 
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calculation would not accurately simulate the transient deformation of the drop. In  
addition, it should be possible to devise a scheme which would incorporate the incom- 
pressibility constraint (15) in the formulation of the mathematical system to be solved. 
These extensions will, however, be relegated to a later study. 

This work was supported in part by the National Science Foundation under grant 
ENG-23229, and by NATO Research Grant No. 1442. It was initiated a t  Cambridge 
University while A, Acrivos was on sabbatical under a Guggenheim Fellowship. 
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